ERI-60-3.100 Bridge in Erie County, Ohio Part I: Drilled Shafts for Slope Stabilization and Bridge Support April 10, 2019

> Presentation at 10th Geo³T² Conference Session 5A-1 Jamal Nusairat, Ph.D., P.E.

July 2001, a new structure was designed Contractors Input in Design

- Design Consultant-Richland Engineering Limited, Mansfield, OH
- General Contractor-S.E. Johnson Companies, Inc., Maumee, OH
- Geotechnical Consultant-BBC&M Inc, Dublin, OH
- * Rock Anchors-Schnabel Engineering, Chicago, IL
- Instrumentation and Monitoring- E.L. Robinson, Columbus, OH

Subsurface Investigation and Field Observations

- A total of 34 soil borings were performed over multiple phases for this project by BBCM
- Installation of 5 inclinometers and monitoring
- Slope stability analyses
- Evidence of slope movement
 - Cracking at surface Measured crack widths
- Sloping bedding planes in bedrock at exposure on north side of river within upper bedrock unit

Soil Borings and Inclinometers

- Several distinct layers of bedrock were encountered within all of the borings
- Inclinometers indicated significant movement near the interface of the reddish brown Bedford Shale and the gray becoming dark gray Ohio Shale
- Direct shear testing—residual strength
- Residual Friction Angle for Design = 10°

Slope Stability Analyses

- The intention was to determine if deep failure surface was possible or if likely only shallow
- Provided an indication of the relative factors of safety for various failure surfaces
- Considered residual strength of shale

Conclusions of Subsurface Investigation

- Instability appeared to be in upper bedrock layer known as Bedford Shale
- Foundations on the slope would either need to resist applied earth loading or else would need to stabilize entire slope
- Several general options were discussed to allow for construction of the bridge

Proposed Structure

- The decision was made to utilize a relatively long structure spanning the entire valley supported by 4 high capacity piers
- The piers would be supported on drilled shafts designed to carry any applied earth load with tolerable deflection at the top

ELEVATION

S.R. 60 Over Vermilion River

Determination of Shaft Load

- Intent was to have shafts resist applied soil loads which would likely occur over time; not to stabilize the entire slope
- Based on presence of slickensides, inclinometer data, and shear strength, change from loading to resistance taken as the interface of Bedford and Ohio Shale

Long Term Shaft Loading Caused by Moving Earth

- Magnitude based on at rest condition, insufficient movement to consider active
- Residual shear strength of shale used for computations
- Zone of influence taken into account by computing load over 3 shaft diameters

Design of Shafts

- Iterative procedure using the computer program LPILE
- Stiffness of the shaft for geotechnical models considered all reinforcement
- Analyzed two general conditions
 1) Long term with earth loading shafts
 2) Short term with shafts loading earth

Structure Design

- Vertical cantilevered beam with lateral load
- Column with vertical eccentric loading
- Rock socket for fixity
- Analyzed as a reinforced concrete column with vertical and lateral loading

12' Diameter Drilled Shafts

- Single shaft to minimize applied load
- High strength 5 ksi concrete to minimize shaft diameter
- Larger diameter resists more load, requires more reinforcing
- Smaller diameter does not have enough space for reinforcing

Shear Resistance in Shaft

- Shear load determined shaft diameter
- 12' diameter required to contain enough reinforcing steel for shear resistance
- H piles used for shear reinforcement
- H piles small in size in proportion to concrete area

Refine Foundation Design

- Rock anchor tiebacks to reduce bending moment and deflection
- Reduce ground elevation to reduce load and lower tieback connection point
- Contractor input in design

Rock Anchors

- 45 degree angle from vertical to stay within right of way
- Multiple anchors for redundancy and to limit size (14 strand, 490 kips/each)
- Fanned to allow for variation in direction of applied load
- Redundant corrosion protection

Construction Methods

- Auger drilled through Bedford shale in one day, 12'-6" diameter (40' deep)
- Steel casing installed above bedrock, 12'-0" diameter
- Core barrel drilled through hard shale in 5 days, 11'-6" diameter (40' deep)

 $\neg \neg \neg \neg \angle \cup \neg \neg$

4/4/2013

ERI-60-3.100 Bridge in Erie County, Ohio Part II: Instrumentation and Longterm Monitoring

April 10, 2019

Presentation at 10th Geo³T² Conference Session 5A-2 Jamal Nusairat, Ph.D., P.E.

Objectives

- Plan and execute instrumentation and monitor load testing of Piers 1 and 2.
- Study the temperature effect on massive pours
- Determine the soil and bedrock p-y curves.
- Determine load-deformation characteristics of the drilled shaft.
- Measure the actual lock off load in the anchors.
- Monitor the Piers and the slope during service life.

Pier 1 50 Sisterbar Strain Gages 2 inclinometers 1 Biaxial Tiltmeter

Pier 2 2 inclinometers

Pictures of Instrumentation Installation

Pictures of Instrumentation Installation

Pictures of Instrumentation Installation

Pictures of Pier 1 Instrumentation

Instruments locations

Temperature monitoring in Pier 1

Temperature monitoring in Pier 1

Client: S.E. Johnson Construction Companies, Inc. Report I Project: ODOT 5(01) SR 60 Birmingham, Ohio CTL Pro Temperature vs Time Caisson #1, 60.5 ft from bottom

Report Date: May 15, 2002 CTL Project No. 026002EV

Strains in Pier 1 (East-West) 3/13 ~ 5/28/02

Anchor Tensioning- Pier 1

Deflection with depth during Tensioning of Pier 1

Strains during anchor tensioning in Pier 1

Long Term monitoring Results 5/30/2002 ~ 8/21/2002 After opening Bridge to Traffic

Deflection in Pier 1

Strain vs. Time in Pier 1 (East-West Direction)

Load Cell Measurements in Pier 1 Anchors

Long Term monitoring Results

5/30/2002 ~ 5/17/2018

4 Earth Inclinometers were added near the Rear Abutment and Piers 1 and 2

ERI-60 Inclinometer #B-7 (Close to Pier 1): A-Dir INC

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0 **×**0 R - \sim Ó 10 но Соста ð 20 30 40 Depth (ft.) 50 -0-12/04/2004 60 З 70 4/21/2014 Q ★-4/21/2014 80 -0-6/19/2014 90 6/19/2014

100

ERI-60 Inclinometer #B-7 (Close to Pier 1): B-Dir CUM

ERI-60 Inclinometer #B-7 (Close to Pier 1): B-Dir INC

ERI-60 Inclinometer #B-7 (Close to Pier 1): A-Dir CUM

ERI-60 Inclinometer #B-7 (Close to Pier 1): A-Dir INC

Deflection (in.)

ERI-60 Inclinometer #B-7 (Close to Pier 1): B-Dir CUM

ERI-60 Inclinometer #B-7 (Close to Pier 1): B-Dir INC

Deflection (in.)

0

0.2

0.4

0.6

0.8

4/21/2014

E.L. ROBINSON E N G I N E E R I N G 1

-0.2

ERI-60 Pier #1 Inclinometer #1 : A-Dir CUM

ERI-60 Pier #1 Inclinometer #1: B-Dir CUM

ERI-60 Pier #1 Inclinometer # 2: A-Dir CUM

ERI-60 Pier #1 Inclinometer # 2: B-Dir CUM

ERI-60: Load Cells Monitoring at Pier#1 (5/30/2002 ~ 5/17/2018)

Conclusions

- The instrumentation and monitoring added a valuable input in understanding the behavior of the piers and slope during construction and over the 16 years of monitoring.
- The deflection and strain build up is still going on as shown in the time plots.
- The monitoring is helping ODOT decide on the status of the structure and how safe it is.

Thank you

